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The nearest-neighbor-interaction spin-1 Ising model is investigated within the damage-spreading approach.
Exact relations involving quantities computable through damage-spreading simulations and thermodynamic
properties are derived for such a model, defined in terms of a very general Hamiltonian that covers several
spin-1 models of interest in the literature. Such relations presuppose translational invariance and hold for any
ergodic dynamical procedure, leading to an efficient tool for obtaining thermodynamic properties. The imple-
mentation of the method is illustrated through damage-spreading simulations for the ferromagnetic spin-1 Ising
model on a square lattice. The two-spin correlation function and the magnetization are obtained, with precise
estimates of their associated critical exponents and of the critical temperature of the model, in spite of the small
lattice sizes considered. These results are in good agreement with the universality hypothesis, with critical
exponents in the same universality class of the spin-1 /2 Ising model. The advantage of the present method is
shown through a significant reduction of finite-size effects by comparing its results with those obtained from
standard Monte Carlo simulations.
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I. INTRODUCTION

Computer simulations �1� have become one of the most
important tools in the study of physical systems nowadays.
Essentially, this happened due to a fast advance in computer
technology, in such a way that hard computational tasks—
considered as essentially intractable some years ago—are be-
coming more and more investigated. Among many types of
numerical simulations, the Monte Carlo �MC� method �2,3�
appears as a commonly used technique, being applied suc-
cessfully to a wide variety of systems. In a standard MC
simulation one investigates the dynamical �i.e., out-of-
equilibrium� behavior, or the long-time �presumably at equi-
librium� properties of a given physical system, by following
the time evolution of a single copy of it, with the dynamical
variables being updated according to certain dynamical rules.
The major limitation of this method concerns the constraint
for simulating finite systems, and consequently, the undes-
ired obstacle of dealing appropriately with the finite-size ef-
fects. Usually, one analyzes the largest possible sizes, taking
into consideration the computing facilities available, and
makes extrapolations to the infinite-size limit �i.e., thermo-
dynamic limit�.

A different type of MC simulation, known as the
“damage-spreading” �DS� technique �4,5�, turned out to be
very effective for studying both the dynamical and static
properties of statistical models. In these simulations, one in-
vestigates the time evolution of the Hamming distance be-
tween two �originally identical� copies of a given system,

with a perturbation �or damage� introduced in one of them at
the initial time. In order to ensure that possible differences
between the two copies, at later times, are only due to their
initial damage, the two copies are set to evolve under the
same updating rules and sequences of random numbers. In
what concerns investigations of dynamic properties, the DS
method has been applied to many magnetic systems, like the
Ising �4–10� and Potts �11–14� models, among others. In-
triguingly, the propagation of the initial damage depended on
the particular dynamical procedure used for the simulations.

Usually one is also interested in obtaining equilibrium
properties from numerical simulations; in what concerns the
DS technique, this possibility is raised when exact relations
involving quantities computable from DS simulations and
thermodynamic properties were derived for the Ising ferro-
magnet �15�. This led to a new numerical procedure to esti-
mate quantities like order parameters and two-spin correla-
tion functions, and its implementation was done, as an
illustrative example, through simulations for the ferromag-
netic Ising model on a square lattice, resulting in a significant
reduction of finite-size effects �15�. Further on, more general
exact relations were derived for other systems, like the Potts
�16�, Ashkin-Teller �16�, discrete N-vector �17�, and �N�, N��
�18� models. These relations are valid for any ergodic dy-
namical procedure applied to translationally invariant sys-
tems, leading, as expected, to thermodynamic properties that
do not depend on the particular kind of dynamics employed.

Recently, the corresponding exact relations were applied
in DS simulations of the q-state Potts �19� and Ashkin-Teller
�20� ferromagnets on a square lattice. In what concerns the
Potts model, the efficiency of the method was illustrated
through precise estimates of the critical exponents � and �,
associated, respectively, with the magnetization and two-spin
correlation function, for q=2, 3, and 4. For the Ashkin-Teller
model, the analysis of such quantities was restricted to the
Baxter line, well known for its continuously varying critical
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exponents �21�; the method provided accurate estimates, in
spite of the small lattice sizes considered, yielding agree-
ments of the computed critical exponents with the corre-
sponding exact results within four decimal places. In this
latter case, besides a significant reduction of finite-size ef-
fects with respect to standard MC simulations, the well-
known universality breakdown along the Baxter line was de-
tected, with the results suggesting smooth and continuous
variations of the critical exponents, which represents a non-
trivial task within MC simulations.

In the present work we investigate the nearest-neighbor-
interaction spin-1 Ising model through the DS technique. It is
important to recall that, according to the universality hypoth-
esis, the critical exponents associated with a phase transition
in a spin-1 Ising model, on a given lattice should coincide
with those of the corresponding spin-1 /2 Ising model on a
lattice of the same dimension. Herein, besides deriving exact
DS relations, we test the universality hypothesis for the
spin-1 Ising model on a square lattice. In the next section we
derive exact relations between quantities computable through
DS simulations and thermodynamic properties for the spin-1
Ising model. These relations are valid for any ergodic dy-
namical procedure applied on a translationally invariant sys-
tem. In Sec. III, we define the numerical procedure to be
used in order to implement the DS simulations by making
use of such exact relations and illustrate the method by ap-
plying it to the ferromagnetic nearest-neighbor-interaction
spin-1 Ising model on a square lattice. Finally, in Sec. IV we
present our conclusions.

II. EXACT DAMAGE-SPREADING RELATIONS
FOR THE SPIN-1 ISING MODEL

Let us consider the nearest-neighbor-interaction spin-1
Ising model defined in terms of the Hamiltonian

H = − J�
�ij�

SiSj − L�
�ij�

Si
2Sj

2 − D�
i

Si
2 − H�

i

Si, �2.1�

where Si= �1,0 and the summation ��ij� runs over all pairs
of nearest-neighbor sites of a given regular lattice. Since in
the derivation that follows one requires translational invari-
ance with respect to the site magnetizations, the coupling
constants J and L should be both positive; however, in what
concerns the fields D and H, there are no restrictions on their
signs. For the exceptional case J=H=0, one has to avoid
situations where combinations of �L, D� may lead to a stable
antiferromagnetic state at low temperatures.

In order to investigate DS properties, one should deal with
two copies �A and B� of the system, characterized by the
variables �Si

A	 and �Si
B	, respectively. We define a damaged

site, at a given time t, when Si
A�t��Si

B�t�; there are six pos-
sible types of damaged sites in the present system. For com-
putational purposes, it is more convenient to work with the
following binary variables,

�i =
1

2
Si�1 + Si� , �2.2�

�i = 1 − Si
2, �2.3�

	i =
1

2
Si�Si − 1� . �2.4�

Below, we list all six possible types of damages associated to
a given site i:

�1� �i
A = 1 and �i

B = 0 �Si
A = 1,Si

B � 1� , �2.5�

�2� �i
A = 0 and �i

B = 1 �Si
A � 1,Si

B = 1� , �2.6�

�3� �i
A = 1 and �i

B = 0 �Si
A = 0,Si

B � 0� , �2.7�

�4� �i
A = 0 and �i

B = 1 �Si
A � 0,Si

B = 0� , �2.8�

�5� 	i
A = 1 and 	i

B = 0 �Si
A = − 1,Si

B � − 1� ,

�2.9�

�6� 	i
A = 0 and 	i

B = 1 �Si
A � − 1,Si

B = − 1� .

�2.10�

If one considers the two copies A and B in thermal equilib-
rium, the probabilities that the above-defined damages ap-
pear at site i are given, respectively, by

p1 = ��i
A�1 − �i

B��t, �2.11�

p2 = ��1 − �i
A��i

B�t, �2.12�

p3 = ��i
A�1 − �i

B��t, �2.13�

p4 = ��1 − �i
A��i

B�t, �2.14�

p5 = �	i
A�1 − 	i

B��t, �2.15�

p6 = ��1 − 	i
A�	i

B�t, �2.16�

where �¯�t represents time averages over trajectories in
phase space. Let us now define differences between these
probabilities,

E 
 p1 − p2 = ��i
A�t − ��i

B�t, �2.17�

F 
 p3 − p4 = ��i
A�t − ��i

B�t, �2.18�

G 
 p5 − p6 = �	i
A�t − �	i

B�t. �2.19�

Next, we will show that under some constraints to be im-
posed for the time evolution of copies A and B, the quantities
E, F, and G will be directly related to thermodynamic prop-
erties.

Let us then consider the initial time �t=0� with the two
copies in thermal equilibrium. Below, we define six different
types of boundary conditions to be imposed on these time
evolutions for t
0 �denoted herein by ei �i=1,2 , . . . ,6��.

Time evolution e1: In this case we consider a boundary
condition for the variable Si

B at the central site of the lattice,
S0

B�1 �i.e., �0
B=0�, for all times t
0. This represents a

“source of damage” at the central site; all remaining spins of
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the lattice, on both copies, are let free to evolve following the
corresponding dynamical procedure.

Time evolution e2: The two copies should evolve freely
according to a given dynamical procedure, except for their
central sites, which are restricted to �0

A=1 and �0
B=0, for all

times t
0.
Time evolution e3: The central site of copy B is restricted

to �0
B=0 for all times t
0. All remaining sites, on both

copies A and B, are let free to evolve under a certain dynami-
cal procedure.

Time evolution e4: The two copies should evolve freely
according to a given dynamical procedure, except for their
central sites, which are restricted to �0

A=1 and �0
B=0, for all

times t
0.
Time evolution e5: Copy A evolves with no restrictions;

the central site of copy B is restricted to 	0
B=0 for all times

t
0.
Time evolution e6: The two copies should evolve freely,

except for their central sites, which are restricted to 	0
A=1

and 	0
B=0, for all times t
0.

In order to obtain exact relations involving the quantities
of Eqs. �2.17�–�2.19� and correlation functions, as well as
order parameters, we will make use of the time evolutions
defined above. Since different boundary conditions are asso-
ciated with different time evolutions, they will lead, in the
long-time limit, to distinct exact relations, as described be-
low.

Considering the time evolution e1 and assuming that cop-
ies A and B evolve in time under an ergodic dynamics, one
has that

��i
A�t = ��i�T, ��i

B�t =
��1 − �0��i�T

�1 − �0�T
, �2.20�

where �¯�T stands now for thermal averages with no con-
straints. In the equations above, ��i

A�t represents the prob-
ability for the variable Si

A presenting the value +1 with no
restrictions, whereas ��i

B�t is the conditional probability for
finding the variable Si

B=1, provided that S0
B�1.

If our system is translationally invariant, then one may
write

E�e1� =
��0�i�T − ��0�T��i�T

1 − ��0�T
=

C0i
�11� + C0i

�12� + C0i
�21� + C0i

�22�

2�2 − m − p�
,

�2.21�

where C0i
���� �� ,�=1,2� are correlation functions,

C0i
���� = �S0

�Si
��T − �S0

��T�Si
��T, �2.22�

whereas m and p are order parameters,

m = �S0�T, p = �S0
2�T, �2.23�

known as magnetization and polarization, respectively. Since
we are supposing translational invariance, the quantities
above represent standard thermodynamic quantities: namely,
two-spin correlation functions �C0i

�����, magnetization �m�,
and polarization �p� per site, respectively.

Now, considering the time evolution e2, one gets

��i
A�t =

��0�i�T

��0�T
, ��i

B�t =
��1 − �0��i�T

�1 − �0�T
, �2.24�

in such a way that

E�e2� =
��0�i�T − ��0�T��i�T

��0�T�1 − ��0�T�
=

C0i
�11� + C0i

�12� + C0i
�21� + C0i

�22�

�m + p��2 − m − p�
.

�2.25�

Similar procedures for the time evolutions e3 , . . . ,e6, yield,
respectively,

F�e3� =
��0�i�T − ��0�T��i�T

1 − ��0�T
=

C0i
�22�

p
, �2.26�

F�e4� =
��0�i�T − ��0�T��i�T

��0�T�1 − ��0�T�
=

C0i
�22�

p�1 − p�
, �2.27�

G�e5� =
�	0	i�T − �	0�T�	i�T

1 − �	0�T
=

C0i
�11� − C0i

�12� − C0i
�21� + C0i

�22�

2�2 + m − p�
,

�2.28�

G�e6� =
�	0	i�T − �	0�T�	i�T

�	0�T�1 − �	0�T�
=

C0i
�11� − C0i

�12� − C0i
�21� + C0i

�22�

�p − m��2 + m − p�
.

�2.29�

Therefore, the computational procedure may be implemented
by performing the appropriate simulations, with the above-
mentioned time evolutions; after that, one may use Eqs.
�2.21� and �2.25�–�2.29� in order to obtain the order param-
eters and correlation functions of the model.

In what follows, we will obtain additional exact relations
for the order parameters by considering copies A and B
evolving in time in the presence of specific external magnetic
fields without fixing any spin of these copies �this is to be
denoted hereafter as time evolution e7�. For that, at the initial
time �t=0�, one should have both copies in thermal equilib-
rium and with their spins reversed, i.e., Si

A�t=0�=−Si
B�t=0�

on all sites �except, for the trivial cases, Si
A�t=0�=Si

B�t=0�
=0�. Further on, both copies should evolve in time under
opposite small magnetic fields, HA=−HB=H �∀ t
0�. Now,
considering the quantities E and G, defined in Eqs. �2.17�
and �2.19�, one gets, respectively,

��i
A�t = ��i�T, ��i

B�t = �1 − �i�T, �2.30�

�	i
A�t = �	i�T, �	i

B�t = �1 − 	i�T, �2.31�

which lead to

E�e7� = �Si
2�T + �Si�T − 1, G�e7� = �Si

2�T − �Si�T − 1,

�2.32�

�Si�T =
1

2
�E�e7� − G�e7��, �Si

2�T =
1

2
�E�e7� + G�e7�� + 1.

�2.33�

Therefore, for the order parameters, in which case one may
be interested in a wide range of temperatures �sometimes far
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away from criticality�, the single time evolution e7 is less
time consuming from the computational point of view. In
what concerns correlation functions, one should apply the
above procedure, characterized by the time evolutions
e1 , . . . ,e6; although this requires larger computational times,
one is usually restricted to a small range of temperatures
�close to criticality�.

It is important to recall that, in contrast to the results of
Ref. �15�, the exact relations above do not depend on the
“Hamming distance” between two configurations and are
written in terms of quantities that are independent of the
particular dynamical rule; therefore, these relations hold for
any ergodic dynamical procedure.

In the next section we describe the numerical procedure to
be used in order to implement the DS simulations to an spe-
cific model, by making use of the exact relations derived
above.

III. IMPLEMENTATION OF THE TECHNIQUE:
THE FERROMAGNETIC SPIN-1 ISING
MODEL ON THE SQUARE LATTICE

In this section we illustrate the method by applying it to
the ferromagnetic nearest-neighbor-interaction spin-1 Ising
model on a square lattice, i.e., L=D=0 in Eq. �2.1�. For the
simulations of the time evolutions e1 , . . . ,e6, we will con-
sider H=0, whereas in the single time evolution e7, small
magnetic fields will be applied to copies A and B.

First of all, let us describe how we compute the depen-
dence of the correlation functions on the distance between
spins. For the two-site correlation functions one should take
into account the central site of the lattice and an arbitrary site
i, a distance r apart. It should be mentioned that, in most of
the cases, on a square lattice, there are four sites i with the
same distance r from the central site. However, there are a
few exceptions, where one may have more than four sites
with the same distance r from the central site: if one consid-
ers a unit lattice spacing, one has 8 sites whose distance to
the central site is �5 and 12 sites for which this distance is 5.
Therefore, it is always possible to define the correlation func-
tions as the average values,

C�����r� =
1

4�
i�r�

C0i
����, �3.1�

where C0i
���� are defined in Eq. �2.22�. In addition to that, �i�r�

corresponds to a summation over four sites with the same
distance r from the central site; in the exceptional cases
where there may be more than four sites with the same dis-
tance r from the central site, the extra sites are not taken into
account in the averages of Eq. �3.1�.

In the present model, the relevant quantities, computable
through the DS technique described in the previous section,
correspond to the critical temperature and critical exponents
associated with the correlation function C�11��r� and the mag-
netization m. As usual, within DS simulations, we will fol-
low the time evolution of copies A and B of the system, for
a given temperature T, subjected to the same thermal noise
and same set of random numbers. Initially, we let one copy

�e.g., �Si
A	� evolve for teq MC steps towards equilibrium; as

standard practice, our unit of time �1 MC step� consists in a
complete sweep of the lattice. We assume that the equilib-
rium state is attained when one observes small fluctuations in
time on thermodynamic quantities, like magnetization and
energy. After the equilibration process of copy A �time t=0�,
this configuration is stored �as a new copy A0�, which will
remain untouched; then, the time evolution e1 �characterized
by its corresponding constraint, as described in the previous
section� is carried for copies A and B in such a way that one
obtains, after tav MC steps, E�e1�. Now, recovering configu-
ration A0, which will become configuration A for time evo-
lution e2, one performs such an evolution in order to get
E�e2�. The procedure is repeated for time evolutions
e3 , . . . ,e6 in such a way that one may compute the correla-
tion functions and order parameters, making use of the exact
relations derived in the previous section. In the time evolu-
tion e7 copy A is considered in the presence of a sufficiently
small magnetic field and then taken to equilibrium; at this
time �t=0�, copy B is defined with spins, as well as the
magnetic field, reversed with respect to those of copy A.

One should recall that the exact relations of the previous
section hold for any ergodic dynamics applied to translation-
ally invariant systems. Herein, we have considered a simula-
tion in which all sites of the lattice are visited in a sequential
way, and each spin Si

��t� ��=A ,B�, at time t, is updated
according to the following rules.

�i� A possible new state Si
��t+1� is chosen at random, with

Si
��t+1��Si

��t�, from which one calculates the change in
energy, �H�=H��t+1�−H��t�.

�ii� Then, one can define the probability,

pi
��t� =

1

1 + exp���H��
�� = 1/�kBT�� . �3.2�

�iii� By introducing a random number zi�t�, uniformly dis-
tributed in the interval �0, 1�, one performs the change if
zi�t�
 pi

��t�; otherwise, the spin Si
��t� is not updated.

It is important to mention that the spin-updating proce-
dure is the same for all time evolutions e1 , . . . ,e7; however,
in the latest case �time evolution e7� the energy change for
t
0, �H�, should be computed by taking the Hamiltonian
of Eq. �2.1� in the presence of the corresponding �i.e., oppo-
site� external magnetic fields for copies A and B.

We investigated the model on square lattices of linear
sizes L=50 and 100, with periodic boundary conditions. For
the correlation functions, the distance r was measured with
respect to the central site, located at coordinates �L /2, L /2�.
We have always started copy A with all spins Si

A=1 �∀ i�;
then, this copy was let to evolve towards equilibration for teq
MC steps, after which, the second copy �copy B� was cre-
ated. In the case of time evolution e7, we have attributed
small positive numbers to the dimensionless quantity
�H / �kBT��; in order to find its appropriate value, this quantity
was successively decreased in such a way to find no depen-
dence of the particular choice of the magnetic fields on our
results, taking into account the error bars. In the present
simulations we have considered �H / �kBT��=0.0001. For the
evolution towards equilibrium, we verified that teq=1�104
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�L=50� and teq=5�104 �L=100� MC steps were sufficient
for a fulfillment of the equilibrium conditions described
above, i.e., small fluctuations in the magnetization and en-
ergy. When using time evolutions e1 , . . . ,e6, the thermal av-
erages were carried over times tav=2.4�105 �L=50� and
tav=2.4�106 �L=100� MC steps, whereas in the calculation
of the order parameters �time evolution e7� smaller times
were necessary, i.e., tav=1.5�104 �L=50� and tav=3�105

�L=100� MC steps. In order to reduce the possible effects of
correlations in time, we only consider, in our time averages,
data at each time interval of 3 MC steps. Therefore, each
time average consists in an average over tav /3 measurements.
It is important to stress that, due to large fluctuations, the
times tav considered herein are much larger than those used
in simpler ferromagnetic models �15,19�. In addition to that,
in order to improve the statistics, as well as to reduce pos-
sible dependence on sequences of random numbers, each
simulation was repeated for M different samples. For the
linear size L=50 we considered M =50 �time evolutions
e1 , . . . ,e6� and M =20 �time evolution e7�, whereas in the
case L=100 we used M =25 �time evolutions e1 , . . . ,e6� and
M =20 �time evolution e7�.

It should be mentioned that although the critical tempera-
ture of the present model is not known exactly, there are
accurate estimates for it; in terms of the variable u
=exp�−J / �kBT��, one has, e.g., from a transfer-matrix ap-
proach, uC�0.554 066 �Ref. �22��, and from an extensive
low-temperature series expansion up to 79th order, uC
=0.554 065�5� �Ref. �23��. Based on these results, in the fol-
lowing analysis we will express our results in terms of the
approximate critical-temperature estimate,

uC = 0.554065 ⇒
kBTC

J
= 1.693556 . . . . �3.3�

In Fig. 1 we present the correlation function C�11��r� ver-
sus r for a square lattice of linear size L=100. In this case,

our criterion for locating the critical temperature �associated
with the finite size of the system considered� consists in
searching for the temperature ratio T /TC at which the func-
tion C�11��r� presents the slowest decay with r. For clearness,
in Fig. 1 we present only the correlation functions associated
with four typical different ratios T /TC, including the one of
slowest decay, although we have investigated other tempera-
ture ratios as well �in fact, we have swept temperatures
around criticality by considering increments of 0.001 in
T /TC�. The power-law behavior

C�11��r� 
 r−� �r → �� �3.4�

is verified in the inset of Fig. 1 for the temperature ratio
T /TC=0.999, with the associated critical exponent �
=0.2507�0.0025. It is important to recall that, according to
the universality hypothesis, the critical exponents of a given
model should not depend on its microscopic details, but
rather on global properties like the dimension of the lattice
and the symmetry of the order parameter; therefore, the
spin-1 and spin-1 /2 Ising models on lattices of the same
dimension should present the same set of critical exponents.
The present estimate is in agreement with the well-known
exact result for the spin-1 /2 Ising model on a square lattice,
i.e., �=1 /4. In spite of the small lattice size considered, the
temperature associated with the slowest-decay correlation
function presents a relative discrepancy of 0.001 with respect
to the critical temperature of Eq. �3.3�; this discrepancy is
expected to decrease even further for larger lattice sizes. This
tendency was confirmed through the computation of the cor-
relation function C�11��r� for a square lattice of linear size
L=50, as will be shown below.

In Fig. 2 we exhibit the magnetization m versus T /TC for
a square lattice of linear size L=100, obtained by using the
time evolution e7. The log-log plot in the inset yields the
associated critical exponent �=0.1249�0.0003, with the
critical temperature of Eq. �3.3�; in this case, the critical
temperature of Eq. �3.3� led to the best linear fit in such a

0 5 10 15 20 25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

-0.82

-0.80

-0.78

-0.76

-0.74

T/T
C
=0.999

C
(1

1)
(r

)

r

T/T
C

0.999
1.000
1.002
1.005

FIG. 1. The correlation function C�11��r� versus r �square lattice
of linear size L=100� for typical temperature ratios T /TC, near criti-
cality. The slowest decay was found for T /TC=0.999, in which case
the plot of log10�C�1��r�� versus log10 r is presented in the inset,
leading to the estimate �=0.2507�0.0025.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

m

T/T
C

FIG. 2. The magnetization m versus T /TC for a square lattice of
linear size L=100. The inset shows the plot of log10�m� versus
log10�1−T /TC�, leading to the estimate �=0.1249�0.0003.

SPIN-1 ISING MODEL: EXACT DAMAGE-SPREADING … PHYSICAL REVIEW E 78, 031105 �2008�

031105-5



log-log plot. Again, the present critical-exponent estimate is
in agreement with the universality hypothesis when com-
pared with the well-known exact result for the spin-1 /2 Ising
model on a square lattice, i.e., �=1 /8. It is important to
mention that similar results could also be achieved for the
magnetization by using time evolutions e1 , . . . ,e6, although a
larger computational effort would be required in obtaining
the magnetization curve for such a large temperature range
�cf. Ref. �19��. In spite of the reasonably small lattice size
considered, one observes in Fig. 2 a magnetization curve that
is essentially characterized by a lack of fluctuations—even
near criticality—with weak finite-size effects; this represents
one of the greatest advantages of the present DS simulations.
In fact, the critical-exponent estimates for a square lattice of
linear size L=100 �from Figs. 1 and 2� coincide, within the
error bars, with those obtained through the DS technique for
the size L=50. These results suggest that the linear size L
=100 is sufficient, at least in what concerns the DS tech-
nique, for reliable critical-exponent estimates. Combining
the results of the correlation function C�11��r� with those of
the magnetization, one may calculate an average value for
the critical temperature; such an average yields �kBTC /J�
=1.692 709�0.000 847, i.e., uC=0.553 901�0.000 164,
which agree with the results of Eq. �3.3�, within the error
bars.

We now illustrate the efficiency of the present method
when compared with standard MC simulations. In Fig. 3 we
verify the power-law behavior of Eq. �3.4� by presenting the
plots of the correlation function C�11��r� versus r, in logarith-
mic scale, with the data obtained from a standard MC simu-
lation and the present DS procedure. The data exhibited cor-
respond, in each case, to the slowest decay of the correlation
function C�11��r�, found from a sweep in T /TC around the
approximate value of Eq. �3.3� with increments of 0.001, as
mentioned above, and using the same simulation parameters
for each linear size L �e.g., teq and tav�. In Fig. 3�a� we com-
pare the result of a standard MC simulation with those of the
DS technique for a linear size L=50; one notices a signifi-
cant reduction of finite-size effects in the latter approach
with respect to the first one, shown through the following
features: �i� The ratio T /TC, associated with the slowest de-
cay of the correlation function C�11��r�, is closer to the ap-
proximate value of Eq. �3.3� in the DS technique ��T /TC�
=0.995� than in the MC method ��T /TC�=0.990�. �ii� The
linear fit, obtained in the log-log plot of the DS results, is
more reliable in the sense that it covers a larger range of
values of r. However, if one restricts the analysis, in each
case, to those sets of points associated with the best linear
fits, one gets essentially the same estimates �within the error
bars� for the exponent � in both techniques, i.e., �
=0.2429�0.0075 �linear fit considering 7 points from the
MC procedure� and �=0.2505�0.0008 �linear fit with 11
points from the DS method�, which are both in agreement
with the exact result for the spin-1 /2 Ising model on a square
lattice. For increasing values of r, the finite-size effects get
pronounced, as usual, leading to points out of the linear re-
gime; keeping in mind that the power-law behavior of Eq.
�3.4� is expected to hold in the limit r→�, one notices that
the linear regime in Fig. 3�a� occurs typically for 1
r
6
�4
r
12� in the MC �DS� approach. Therefore, for this

case, the finite-size effects are weaker in the DS technique,
leading essentially to an increase by a factor of 2 in the
values of r that fit within the power-law behavior of Eq.
�3.4�. In Fig. 3�b� we exhibit the DS results for the two linear
sizes analyzed: namely, L=50 and L=100. One observes that
this method produces data for the smaller size that are com-
parable to those of the larger size, showing the efficiency of
the DS technique, in the sense that one may obtain accurate
critical-exponent estimates from rather small lattice sizes; the
two estimates for the exponent �, from Fig. 3�b�, coincide,
within the error bars. However, the range of validity of the
power-law behavior, associated with the linear fit of Fig.
3�b�, occurs for larger values of r in the case L=100 �typi-
cally for 7
r
20�, as expected. The reduction of finite-size
effects was verified also in the magnetization curve, where
one observes a smooth curve around criticality, followed by
the well-known tail �characterized by m�0 for T�TC�
within the MC method, whereas in the DS approach one
finds a sharp curve around TC, like the one shown in Fig. 2.

Although not expected to be relevant for the present
model, the higher-order correlation functions and polariza-
tion parameter �defined in Eqs. �2.22� and �2.23�, respec-
tively� may be also computed within the present approach.
Using time evolutions e1 , . . . ,e6, we calculated the correla-
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FIG. 3. Linear fits for the computation of the exponent �, asso-
ciated with the correlation function C�11��r�. �a� The data obtained
through standard MC simulations �black circles� and the present DS
approach �black squares�, for a square lattice of linear size L=50,
are compared. One sees that the finite-size effects are reduced in the
later procedure. �b� Data produced by the present DS approach for
the sizes L=50 �solid squares� and L=100 �open squares�.
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tion function C�22��r� and the polarization parameter for a
linear size L=100, as exhibited in Fig. 4. For typical tem-
peratures around TC, the correlation function C�22��r� pre-
sents a trivial behavior for this model, i.e., C�22��r�=0, for
r�0, reflecting the absence of squared terms �L=D=0� in
the Hamiltonian considered in the present simulations. In
what concerns the polarization, one gets a smooth behavior
around TC, suggesting that there is no phase transition asso-
ciated with this parameter. One notices that the polarization
approaches its expected asymptotic value for sufficiently

large temperatures, i.e., p=2 /3, since in this limit the spin
variables should become equally distributed throughout its
three possible states, Si= �1,0. Although the quantities pre-
sented in Fig. 4 do not bring any additional physical infor-
mation to the present model, they are relevant for other con-
troversial spin-1 models in the literature, like the Blume-
Capel �L=0; D�0� �24,25� and Blume-Emery-Griffithis �L
�0; D�0� �26� models, and may be computed also within
the present approach.

IV. CONCLUSION

We have studied the nearest-neighbor-interaction spin-1
Ising model through the damage-spreading technique. Exact
relations involving quantities computable through damage-
spreading simulations and thermodynamic properties were
derived for a general spin-1 model that covers several rel-
evant and controversial particular cases of the literature.
These relations hold for any ergodic dynamical procedure
applied to translationally invariant systems. The implemen-
tation of the method was illustrated by performing damage-
spreading simulations for the ferromagnetic spin-1 Ising
model on a square lattice. Its effectiveness was verified
through the computation of the two-spin correlation function
and the magnetization, leading to precise estimates of the
associated critical exponents, in spite of rather small lattice
sizes. We have obtained the estimates

� = 0.1249 � 0.0003, � = 0.2507 � 0.0025, �4.1�

which fall in the same universality class of the spin-1 /2 Ising
model on two-dimensional lattices. Such results confirm the
universality hypothesis for this model, which states that criti-
cal exponents should depend only on global properties of the
model, like the dimension of the lattice and the symmetry of
the order parameter. As far as we know, the two-spin corre-
lation function has never been calculated numerically in the
literature for the present model, and so it was estimated ac-
curately herein within damage-spreading simulations. Com-
bining the results obtained from both correlation function
and magnetization, we have estimated the critical
temperature,

kBTC

J
= 1.692709 � 0.000847 ⇒ uC = exp�− J/�kBTC�� = 0.553901 � 0.000164, �4.2�

which agrees, within the error bars, with the one estimated
from an extensive low-temperature series expansion up to
79th order �Ref. �23��. These results reinforce the efficiency
of the present method, which has also been established on
other spin models �15,19,20�, leading to a significant reduc-
tion of finite-size effects, when comparing with those pro-
duced by standard Monte Carlo simulations.

The present exact relations may be implemented also in
damage-spreading numerical simulations on other transla-
tionally invariant nearest-neighbor interaction spin-1 models,
opening the possibility of investigating more complicated
and controversial models through this technique: �i� ferro-
magnetic models on hypercubic lattices �d�2�, in order to
test further the universality hypothesis; �ii� models character-
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FIG. 4. �a� The correlation function C�22��r� versus r, for typical
temperature ratios T /TC, near criticality. �b� The polarization p ver-
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ized by squared-spin terms in the Hamiltonian, e.g., the
Blume-Capel �24,25� and Blume-Emery-Griffithis �26� mod-
els, for which there are several controversies concerning
their phase diagrams on d-dimensional lattices.
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